
June Andronick | Keynote of FMCAD 2022, Trento

The seL4® Verification Journey:
How Have the Challenges and Opportunities Evolved

seL4 is a registered trademark of LF Projects, LLC

2

A good journey…

3Photo by mohammed alherz on Unsplash

…starts with a dream

4

…delivers achievements

Photo by Xan Griffin on Unsplash

5Photo by Simon Migaj on Unsplash

…should offer opportunities to reflect

6

…and present a path to a bigger journey

Photo by Joshua Earle on Unsplash

7

 #1
 Make a dream come true:
 verified, performant kernel

 #2
 Deliver it to the world:
 true trustworthiness for critical software

 #3
 Keep it live:
 for today and tomorrow

Overview

Photo by Xan Griffin on Unsplash

8

 #1
 Make a dream come true:
 verified, performant kernel

Overview

Photo by Xan Griffin on Unsplash

9

 #1
 Make a dream come true:
 verified, performant kernel

Overview

Photo by Xan Griffin on Unsplash

Opportunities:
๏ achieve a decades-long dream
๏ demonstrate FM on real systems

The seL4 story started as…

10

hard world-changing

a research project wanting to solve a problem that was both

Formally verified microkernel.
At no more than 10% performance degradation.

Gernot Heiser, ~2004

The seL4 story started as…

10

hard world-changing

a research project wanting to solve a problem that was both

Formally verified microkernel.
At no more than 10% performance degradation.

Gernot Heiser, ~2004

The seL4 story started as…

10

hard world-changing

a research project wanting to solve a problem that was both

Formally verified microkernel.
At no more than 10% performance degradation.

Gernot Heiser, ~2004

hardware

software

critical non-critical,
untrusted

The seL4 story started as…

10

hard world-changing

a research project wanting to solve a problem that was both

Formally verified microkernel.
At no more than 10% performance degradation.

Gernot Heiser, ~2004

hardware

software

critical non-critical,
untrusted

The seL4 story started as…

10

hard world-changing

a research project wanting to solve a problem that was both

Formally verified microkernel.
At no more than 10% performance degradation.

Gernot Heiser, ~2004

hardware

software

critical non-critical,
untrusted

The seL4 story started as…

11

hard world-changing

a research project wanting to solve a problem that was both

Formally verified microkernel.
At no more than 10% performance degradation.

Gernot Heiser, ~2004

The seL4 story started as…

11

hard world-changing

a research project wanting to solve a problem that was both

Formally verified microkernel.
At no more than 10% performance degradation.

Gernot Heiser, ~2004

Done.
Gerwin Klein & al, 2009

The seL4 story started as…

12

hard world-changing

a research project wanting to solve a problem that was both

Formally verified microkernel.
At no more than 10% performance degradation.

Gernot Heiser, ~2004

Done.
Gerwin Klein & al, 2009

And more. And more.
Gerwin Klein & al, 2013

The seL4 journey

13

Minimised TCB!

The seL4 journey

13

Minimised TCB!

microkernels

The seL4 journey

13

Minimised TCB!

microkernels

software

hardware

The seL4 journey

13

Minimised TCB!

microkernels

software

hardware

OS

hardware

Apps Apps

The seL4 journey

13

Minimised TCB!

microkernels

software

hardware

OS

hardware

Apps Apps

kernel

hardware

Apps Apps

OS comp

The seL4 journey

13

Minimised TCB!

microkernels

software

hardware

OS

hardware

Apps Apps

kernel

hardware

Apps Apps

OS comp

performance?

The seL4 journey

13

Minimised TCB!

microkernels

performant
microkernels!

software

hardware

OS

hardware

Apps Apps

kernel

hardware

Apps Apps

OS comp

performance?

14

performance?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

14

performance?

assurance?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

14

performant
and verified
microkernel!

performance?

assurance?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

14

performant
and verified
microkernel!

performance?

assurance?

spec?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

14

performant
and verified
microkernel!

and proved
isolation

performance?

assurance?

spec?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

14

performant
and verified
microkernel!

and proved
isolation

performance?

assurance?

spec?

compiler?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

14

performant
and verified
microkernel!

and proved
isolation

performance?

assurance?

spec?

compiler?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

down to binary

14

performant
and verified
microkernel!

and proved
isolation

performance?

assurance?

spec?

compiler?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

down to binary

Challenges:
๏ Scale
๏ Thoroughness
๏ Performance

๏ Make formal verification scale to 10,000
lines of low-level code

๏ with proof frameworks supporting the
verification of functional correctness,
security properties and binary correctness

๏ while maintaining performance

Solutions:
๏ Combination of foundational techniques
๏ Targeting machine-checked proof
๏ Working hand in hand with systems people

15

hardware

software

critical non-critical,
untrusted

seL4 proofs’ foundational techniques

15

hardware

software

critical non-critical,
untrusted

Binary Code

seL4 proofs’ foundational techniques

16

Binary Code

C Code

seL4 proofs’ foundational techniques

17

C Code

~10,000 LOC

seL4 kernel call graph

>500 functions

seL4 proofs’ foundational techniques

void kernel_call () {…}

18

C CodeC Code SemanticsC Code

C-to-Isabelle Parser: C program → SIMPL program

(mainly) deeply embedded
generic imperative language
in Isabelle

void kernel_call () {…} kernel_call_body ≡ …

seL4 proofs’ foundational techniques

19

abstract functional specification

kernel_call_body ≡ …void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

seL4 proofs’ foundational techniques

kernel_call_A ≡ …

19

abstract functional specification

kernel_call_body ≡ …void kernel_call () {…}

state monad

void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

seL4 proofs’ foundational techniques

kernel_call_A ≡ …

19

abstract functional specification

kernel_call_body ≡ …void kernel_call () {…}

 state → (res, state)

state monad

void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

seL4 proofs’ foundational techniques

kernel_call_A ≡ …

19

abstract functional specification

kernel_call_body ≡ …void kernel_call () {…}

 state → (res, state)

state monad
non-deterministic

void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

seL4 proofs’ foundational techniques

kernel_call_A ≡ …

19

abstract functional specification

kernel_call_body ≡ …void kernel_call () {…}

 state → (res, state)

state monad
non-deterministic

set

void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

seL4 proofs’ foundational techniques

kernel_call_A ≡ …

19

abstract functional specification

kernel_call_body ≡ …void kernel_call () {…}

 state → (res, state)

state monad
non-deterministic

with failure

set

void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

seL4 proofs’ foundational techniques

kernel_call_A ≡ …

19

abstract functional specification

kernel_call_body ≡ …void kernel_call () {…}

 state → (res, state)

state monad
non-deterministic

with failure

× boolset

void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

seL4 proofs’ foundational techniques

kernel_call_A ≡ …

20

C Code

Specification

Isabelle

C Code SemanticsC Code

seL4 main theorem #1: Functional correctness

C ⊑ A

void kernel_call () {…} kernel_call_body ≡ …

A ≡ ADT uop kernel_call_A

C ≡ ADT uop kernel_call_body

kernel_call_A ≡ …

20

C Code

Specification

Isabelle

C Code SemanticsC Code

seL4 main theorem #1: Functional correctness

C ⊑ A

void kernel_call () {…} kernel_call_body ≡ …

A ≡ ADT uop kernel_call_A

C ≡ ADT uop kernel_call_body

kernel_call_A ≡ …

refinement
(trace inclusion)

20

C Code

Specification

Isabelle

C Code SemanticsC Code

seL4 main theorem #1: Functional correctness

C ⊑ A

void kernel_call () {…} kernel_call_body ≡ …

A ≡ ADT uop kernel_call_A

C ≡ ADT uop kernel_call_body

kernel_call_A ≡ …

proved by
forward simulation

refinement
(trace inclusion)

20

C Code

Specification

Isabelle

C Code SemanticsC Code

seL4 main theorem #1: Functional correctness

C ⊑ A

void kernel_call () {…} kernel_call_body ≡ …

A ≡ ADT uop kernel_call_A

C ≡ ADT uop kernel_call_body

kernel_call_A ≡ …

proved by
forward simulation

kernel_call_A

kernel_call_body

s

s’ t’

t

refinement
(trace inclusion)

20

C Code

Specification

Isabelle

C Code SemanticsC Code

seL4 main theorem #1: Functional correctness

C ⊑ A

void kernel_call () {…} kernel_call_body ≡ …

A ≡ ADT uop kernel_call_A

C ≡ ADT uop kernel_call_body

kernel_call_A ≡ …

proved by
forward simulation

kernel_call_A

kernel_call_body

s

s’ t’

t

required many
invariants

about spec!

refinement
(trace inclusion)

{invs} A {invs}

21

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

kernel_call_body ≡ …

Isabelle

seL4 main theorem #2: integrity

21

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity no unauthorised
modification

kernel_call_body ≡ …

Isabelle

seL4 main theorem #2: integrity

21

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

(according to a user-level
access-right policy)

no unauthorised
modification

kernel_call_body ≡ …

Isabelle

seL4 main theorem #2: integrity

21

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

(according to a user-level
access-right policy)

no unauthorised
modification

After executing the kernel,
the only modifications
between the final state

and the initial state must be
authorised by the policy

kernel_call_body ≡ …

Isabelle

seL4 main theorem #2: integrity

21

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

(according to a user-level
access-right policy)

no unauthorised
modification

After executing the kernel,
the only modifications
between the final state

and the initial state must be
authorised by the policy

s s’
kernel_call_body ≡ …

Isabelle

seL4 main theorem #2: integrity

21

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

(according to a user-level
access-right policy)

no unauthorised
modification

After executing the kernel,
the only modifications
between the final state

and the initial state must be
authorised by the policy

⟹ integrity p s s’

s s’
kernel_call_body ≡ …

Isabelle

seL4 main theorem #2: integrity

21

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

(according to a user-level
access-right policy)

no unauthorised
modification

After executing the kernel,
the only modifications
between the final state

and the initial state must be
authorised by the policy

⟹ integrity p s s’

s s’

{λs. s=s0}
kernel_call_A ()

{λs. integrity p s s0}

kernel_call_body ≡ …

Isabelle

seL4 main theorem #2: integrity

Hoare triple

22

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

kernel_call_body ≡ …

Isabelle

seL4 main theorem #3: confidentiality

Confidentiality

Isabelle

22

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

kernel_call_body ≡ …

Isabelle

seL4 main theorem #3: confidentiality

Confidentiality

Isabelle

(according to a user-level
access-right policy)

no unauthorised
reading/leakage

22

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

kernel_call_body ≡ …

Isabelle

seL4 main theorem #3: confidentiality

Confidentiality

Isabelle

(according to a user-level
access-right policy)

no unauthorised
reading/leakage

s → s1 → s2 → s3 → …

≀ ≀ ≀ ≀
t → t1 → t2 → t3 → …

Non-interference:

2 executions of the kernel
from states that differ only
on confidential info must

reach states that only differ
from confidential info

22

void kernel_call () {…}void kernel_call () {…}

C Code C CodeC Code Semantics

Specification

Isabelle

Isabelle

Integrity

kernel_call_body ≡ …

Isabelle

seL4 main theorem #3: confidentiality

Confidentiality

Isabelle

(according to a user-level
access-right policy)

no unauthorised
reading/leakage

s → s1 → s2 → s3 → …

≀ ≀ ≀ ≀
t → t1 → t2 → t3 → …

Non-interference:

2 executions of the kernel
from states that differ only
on confidential info must

reach states that only differ
from confidential info

s ~p t
⋀ reachable A s s’
⋀ reachable A t t’

⟹ s’ ~p t’

2-property

23

C Code

Specification

Isabelle

Binary Code Semantics

Isabelle/SMT/HOL4

Availability

Isabelle

IntegrityConfidentiality

Isabelle

C Code SemanticsC Code

Binary Code

translation validation

seL4 main theorem #4: binary verification

decompilation

24

C Code

Specification

Binary Code Semantics

Availability IntegrityConfidentiality

C Code SemanticsC Code

Binary Code

seL4 main theorems

Monad

deep embedding

C Codedeep embedding

refinement (forward simulation) + Hoare triples + invariants

translation validation

Hoare triple2-property

refinement
forward simulation

deep embedding
shallow embedding

monad

Hoare triple

non-interference
2-property

invariant

translation validation

25

C Code

Specification

Isabelle

Binary Code Semantics

Isabelle/SMT/HOL4

Availability

Isabelle

IntegrityConfidentiality

Isabelle

C Code SemanticsC Code

Binary Code

Impact

‣ Binary is correct w.r.t the spec and enforces isolation

26

Impact

‣ Binary is correct w.r.t the spec and enforces isolation

World’s most comprehensive
mathematical proofs

of correctness and security
World’s fastest microkernel

hardware

software

critical non-critical,
untrusted

27

 #1
 Make a dream come true:
 verified, performant kernel

Overview Opportunities:
๏ achieve a decades-long dream
๏ demonstrate FM on real systems

Challenges:
๏ Scale
๏ Thoroughness
๏ Performance

Solutions:
๏ Combination of foundational techniques
๏ Targeting machine-checked proof
๏ Working hand in hand with systems people

27

 #1
 Make a dream come true:
 verified, performant kernel

Overview Opportunities:
๏ achieve a decades-long dream
๏ demonstrate FM on real systems

Challenges:
๏ Scale
๏ Thoroughness
๏ Performance

Solutions:
๏ Combination of foundational techniques
๏ Targeting machine-checked proof
๏ Working hand in hand with systems people

Success!

28

 #2
 Deliver it to the world:
 true trustworthiness for critical software

Overview

Photo by Xan Griffin on Unsplash

29

 #2
 Deliver it to the world:
 true trustworthiness for critical software

Overview

Photo by Xan Griffin on Unsplash

Opportunities:
๏ used in products where it matters
๏ set a standard

30

Setting a standard

The practical advantages of program proving
will eventually outweigh the difficulties,

in view of the increasing costs of programming error.

Tony Hoare, 1969

30

Setting a standard

The practical advantages of program proving
will eventually outweigh the difficulties,

in view of the increasing costs of programming error.

If the issue ever came to court,
the defense of ‘state-of-the-art’ practice would always prevail.

Tony Hoare, 1969

Tony Hoare, 2009

30

Setting a standard

The practical advantages of program proving
will eventually outweigh the difficulties,

in view of the increasing costs of programming error.

If the issue ever came to court,
the defense of ‘state-of-the-art’ practice would always prevail.

Tony Hoare, 1969

Tony Hoare, 2009

 When total absence of error is a requirement
(e.g., in aircraft control software or operating system security),

failure to verify will be treated legally as negligence,
as in other branches of engineering.

But this cannot happen until there is wide-ranging evidence of feasibility, cost, and tool support
of experimental verification of realistic applications.

The sel4 microkernel is just the sort of demonstration that convinces.

31

performant
and verified
microkernel!

and proved
isolation

performance?

assurance?

spec?

compiler?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

down to binary

31

performant
and verified
microkernel!

and proved
isolation

performance?

assurance?

spec?

compiler?

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

down to binary

Success!

32

down to binary

performance?

assurance?

spec?

compiler?

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMSperformant

and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

can I
use it??

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

open
source

can I
use it??

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

from scratch?

open
source

can I
use it??

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

from scratch?

Boeing
cyber-
retrofit

open
source

can I
use it??

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

from scratch?

Boeing
cyber-
retrofit

open
source

can I
use it??

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

from scratch?

Boeing
cyber-
retrofit

open
source

can I
use it??

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

3rd party use in
automotive

medical
space

aviation
military
security

industrial systems
…

32

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

from scratch?

Boeing
cyber-
retrofit

open
source

can I
use it??

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

3rd party use in
automotive

medical
space

aviation
military
security

industrial systems
…

33

The seL4 journey

3rd party use in
automotive

medical
space

aviation
military
security

industrial systems
…

๏ Membership: 26
๏ Premium Members: 6
๏ General Members: 15
๏ Associate Members: 5

34

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

from scratch?

Boeing
cyber-
retrofit

open
source

can I
use it??

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

3rd party use in
automotive

medical
space

aviation
military
security

industrial systems
…

Success drives code evolution,
code evolution requires proof evolution

Challenges:
๏ port verification to new platforms
๏ port verification to new features

34

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

from scratch?

Boeing
cyber-
retrofit

open
source

can I
use it??

platform X?

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

3rd party use in
automotive

medical
space

aviation
military
security

industrial systems
…

Success drives code evolution,
code evolution requires proof evolution

Challenges:
๏ port verification to new platforms
๏ port verification to new features

34

down to binary

performance?

assurance?

spec?

compiler?

use it in real system?

DARPA
HACMS

from scratch?

Boeing
cyber-
retrofit

open
source

can I
use it??

platform X?

feature Y?

performant
and verified
microkernel!

and proved
isolation

Minimised TCB!

microkernels

performant
microkernels!

The seL4 journey

3rd party use in
automotive

medical
space

aviation
military
security

industrial systems
…

Success drives code evolution,
code evolution requires proof evolution

Challenges:
๏ port verification to new platforms
๏ port verification to new features

35

I want it all. And I want it now.

Photo by Nathan Dumlao on Unsplash

I want seL4 verified “with X on Y”

36

Photo by Slashio Photography on Unsplash

ARM

RISC-V

x86

32b

64b

32b

64b

32b

64b

HYP …

(It’s usually what we don’t have in stock :)

UNICORE MULTICORE

seL4-vanilla

seL4-MCS

MCS = Mixed-Criticality Systems

Started as…

37

functional
correctness

abstract spec

design spec

formalised C

proof

proof

invariants

“The” seL4 Theorem

Then…

38

binary verification

functional
correctness

security

init abstract spec

design spec

formalised C

proof

proof

invariants

“The” seL4 Theorem(s)

39

binary verification

functional
correctness

security

init abstract spec

design spec

formalised C

proof

proof

invariants

“The” seL4 Theorem(s)

Then…

40

“The” seL4 Theorem(s)

Then…

different levelsdifferent configs

Arm 32-bit
(non-MCS)
(unicore)

seL4’s formal proofs evolve
with new architectures

seL4’s formal proofs evolve
with new features

▶

Started as…

42

Arm 32-bit

(non-MCS)
(unicore)

Started as…

42

Arm 32-bit

(non-MCS)
(unicore)

👍 NICTA

👍 US Army

👍 AOARD, DARPA

Then…

43

Arm 32-bit

Then…

44

Arm 32-bit
HYP

Arm 32-bit
(no HYP)

👍 DARPA

Then…

45

Arm 32-bit

46

x86 64-bit

Arm 32-bit

Then…

👍 DARPA

47

x86 64-bit

Arm 32-bit

Then…

48

RISC-V 64-bit

x86 64-bit

Arm 32-bit

Then…

👍 HENSOLDT Cyber

👍 TS @ UNSW

49

RISC-V 64-bit

x86 64-bit

Arm 32-bit

Then…

50

Arm 64-bit (HYP!)

RISC-V 64-bit

x86 64-bit

Arm 32-bit

Done
Ongoing
Future

seL4 proofs

(non-MCS, unicore)

NEW
!

seL4’s formal proofs evolve
with new architectures

Then…

👍 NCSC

seL4’s formal proofs evolve
with new architectures

seL4’s formal proofs evolve
with new features▶

52

The proofs have evolved with new features over the years

Two examples:

• bound notification endpoints

• bitfield scheduler optimisation

MCS is different:

• Mixed-Criticality Systems

• time as a resource

• large, invasive change

Big Feature: Mixed-Criticality Systems

53

non-MCS

MCS

Verification of multiple configs in parallel

Arm
32-bit

RISC-V
64-bit

functional

abstract spec

design spec

formalised C

proof

proof

invariants

functional
correctness

54

non-MCS

MCS

NEW
!

seL4’s formal proofs evolve
with new features

Arm
32-bit

RISC-V
64-bit

x86 64-bit

Arm 64-bit

👍 seL4 Foundation

👍 HENSOLDT Cyber
👍 DHS

55

 #2
 Deliver it to the world:
 true trustworthiness for critical software

Overview Opportunities:
๏ used in products where it matters
๏ set a standard

Challenges:
๏ port verification to new platforms
๏ port verification to new features

More challenges:
๏ millions lines of proofs
๏ duplication

Some solutions

56

Some solutions

56

Abstraction, Parametricity, Modularity

‣ Example: split proof into arch-specific and generic part
• Generic part is a parametric module
• Has been effective, but used only for part of proof
• More of this in development

‣ Example: parametric page table structures in seL4/RISC-V
• Regular structure
• Much faster proof completion

57

 #3
 Keep it live:
 for today and tomorrow

Overview

Photo by Xan Griffin on Unsplash

Challenges

Arm
32-bit

RISC-V
64-bit

58

non-MCS

MCS

Arm
32-bit

RISC-V
64-bit

x86 64-bit

Arm 64-bit Any proof framework improvements is not
easily usable on the MCS branch

without duplicating work

Challenges:
๏ maintenance
๏ tech debt from deadlines
๏ application of improvements blocked

Solutions:
๏ robustness, automation, proof engineering
๏ consolidation

Roadmap

Arm
32-bit

RISC-V
64-bit

59

non-MCS

MCS

Multicore investigations

MCS can become the default
configuration once all existing

proofs completed on MCS

Eventually, seL4 verified on multicore,
with unicore as an instance

Arm
32-bit

RISC-V
64-bit

x86 64-bit

Arm 64-bit

60

 Opportunities to
 Reflect

 What would we have
done differently, now

that we know?

60

 Opportunities to
 Reflect

 What would we have
done differently, now

that we know?

 Probably not much…

61

BetterNow

I want it all. And I want it now.

Photo by Jim Tegman on Unsplash

“Doing arch-split too early
would have killed the project”

“Things could have been done
differently if we had sorted out

the right solution already”

61

BetterNow

I want it all. And I want it now.

Photo by Jim Tegman on Unsplash

“a trade-off, everything is”

“Doing arch-split too early
would have killed the project”

“Things could have been done
differently if we had sorted out

the right solution already”

62

 #1
 Make a dream come true:
 verified, performant kernel

 #2
 Deliver it to the world:
 true trustworthiness for critical software

 #3
 Keep it live:
 for today and tomorrow

Photo by Xan Griffin on Unsplash

Conclusion

63

https://proofcraft.systems

Photo by Joshua Earle on Unsplash

Path to a bigger journey

Proofcraft is committed to
keep this evolution alive

Formal proofs must evolve
as the code evolves

seL4’s formal proofs
were a breakthrough in formal

software verification

Success creates interest,
interest pushes evolution

https://proofcraft.systems

